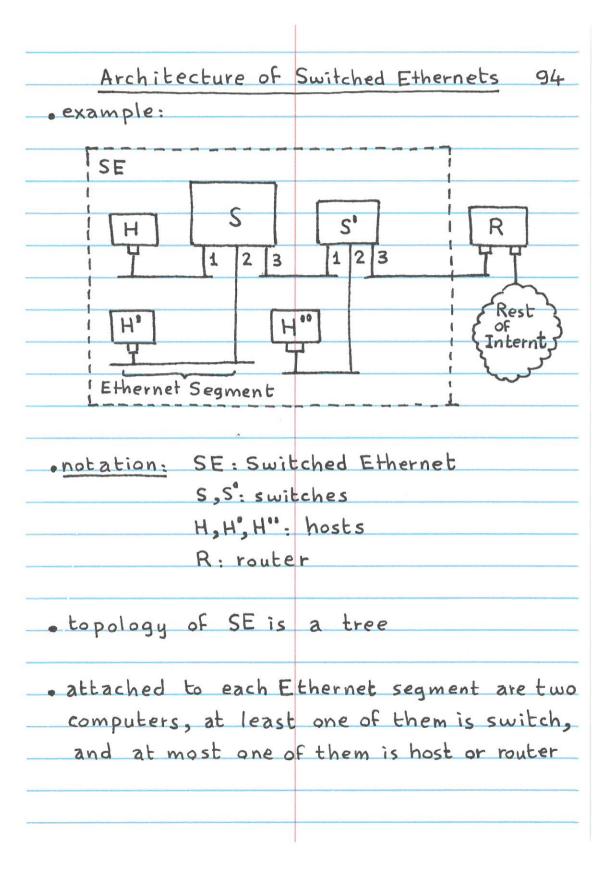
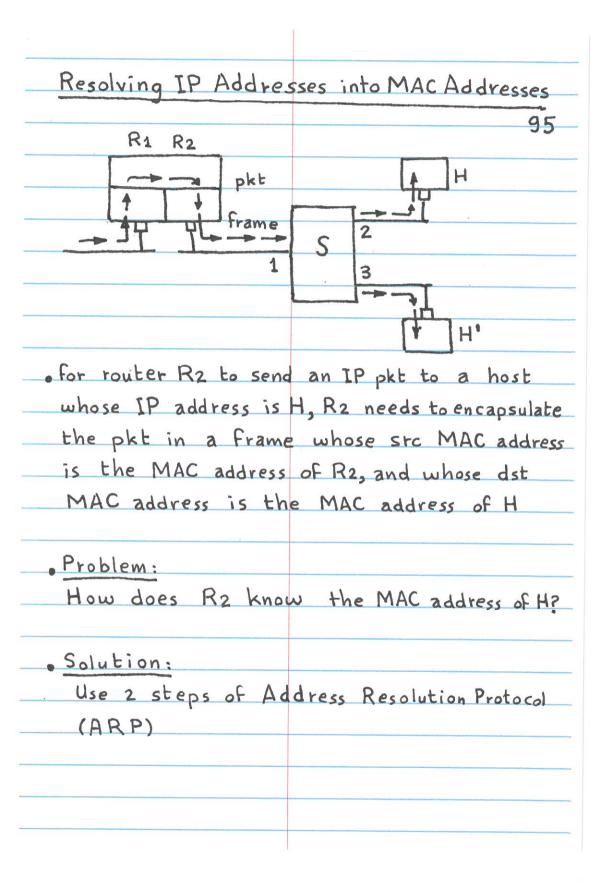
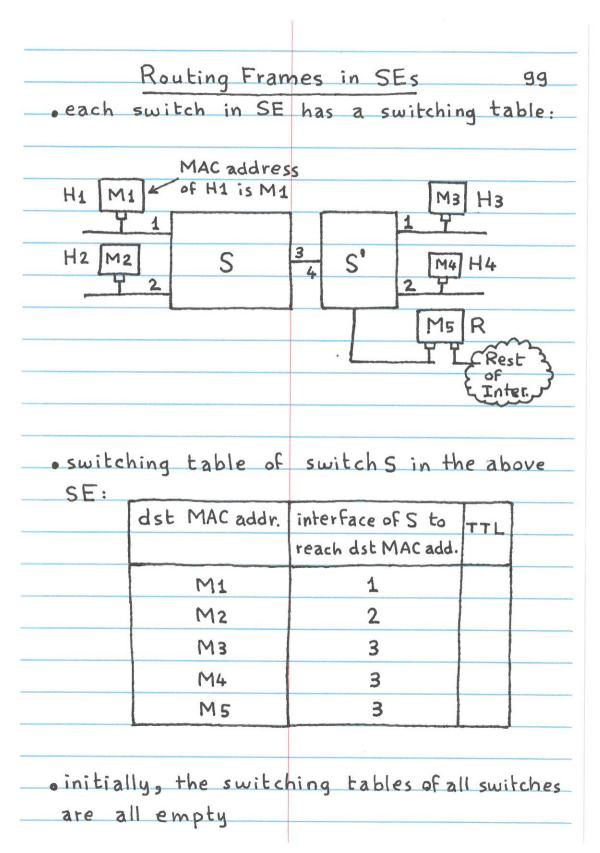


Network Interfaces (Net_int) 88 netnetnetnetint int int int subnet frame . when a net_int sends a frame on a subnet, the frame is sent to every other net_int attached to the subnet each net_int has a unique world-wide MAC address each frame (sent on a subnet) has a header. This header contains the dst MAC address of the net_int that should rov the frame after it is sent on the subnet

IP Addresses of Net_ints 89
each net_int has a unique IP address
. the IP address consists of 4 Bytes:
integer in range [0255]
· broadcast IP address is 255.255.255.255
. IP addresses can be changed by software and can be used in routing IP pkts
between routers


	MAC	Addres	ses of	Net_ints	Q
• each	net_i	nt has	a uniq	ue MAC a	ddres
. the	MAC	address	consis	its of 6 B	ytes.
Each	byte	is writ	ten a	s 2 hexade	cimal
value	s in	the rand	e O.	F	
		•			
· broad	deast	MAC ad	dress	is FF_FF_	FF
betwe	en su	witches	īn su	ritched Eth	ernet


	Frame Head	ers 91	
· a Frame head	der has 5 fie	lds:	
1. Src M	AC address	6 Byte	S
2. dst M	AC address	6 Byte	S
3. type o	f data in Data	a field 2 Byte	s
4. Data	is either an	IP pkt or	
	or an ARP	(query	
	or respons	se) msg	
5. Cyclic	Redundancy C	heck (CRC) 4 Byte	25
Data is IP	pkt:		
	Host		
	+		
		IPpkt	
	net-int	add frame header	
		to IP pkt Frame	
=	4-4-17-	D	
Data is ARP	msg:		
T	net-intla		
		dd Frame header to ARP msq	
4	<u>←</u> ← T+ → -	<u></u>	
	f	rame	


Detecting Corruption in Frames 92

- before a net-int sends a Frame over a subnet, the net-int computes the expected value of the CRC field in the frame header
- when a net_int rcvs a frame from a subnet, it (1) computes the expected value of the CRC field, (2) compares this expected with the rcvd value of the CRC field, [value] and (3) concludes that the rcvd frame is corrupted (and should be discarded) iff the expected and rcvd values do not match.

- each link layer has one subnet. Because subnets come in different technologies (e.g. switched Ethernets, wireless Ethernets, phone lines, TV cables, and satellite links), the architecture of a link layer depends on the architecture of its subnet.
- From now on, we focus on link layers
 whose subnels are Switched Ethernets
 (SEs)

Scenari	o t	o Fill Sw	itc	hing	Tables	oF	S	and S
· refer	to	previous	S	lide	* * *			100

- over interface 2 of S, then entry (M2,2, maxTTL) is added to table of S and frame (M2, M4) is broadcasted to interfaces 1 and 3 of S
 - frame (M2, M4) to interface 1 is discarded by host H1, and frame (M2, M4) to interface 3 is roud by 5°, then entry (M2, 4, max TTL) is added to table of 5°, and frame (M2, M4) is broadcasted to interfaces 1, 2, and 3 of 5°
 - frame (M2, M4) to interfaces 1 and 3 are discarded, and frame (M2, M4) to interface 2 is roud by its final dst host H4
 - table becomes 0, then this entry is discarded from the table.

- each application, that is supported by the data center, is assigned a well-known public IP address
- an application App, sends a request Rq
 to the public IP address of App, and
 later rcvs response packets from the
 public IP address of App as follows

NAT-like Operation of Load Balancers 104

- I. when client C sends a request Rq, whose src is C and whose dst is the public IP address of application App, Rq is directed to a load balancer B for App
 - 2. when B rcvs Rq, it performs 4 tasks: (1) B modifies src of Rq to become B, (2) B modifies dst of Rq to become a private host H (known only to B and is capable of performing the request), (3) B forward modified Rq to H, and (4) B enters following entry to its NAT table

src=H become src=public IP addr.

dst=B dst=C

3. when Brows reply Rp, it uses its NAT table to update the src and dst of Rp.
Finally B forwards the modified Rp to C